<table>
<thead>
<tr>
<th>Course No.</th>
<th>Course Name</th>
<th>L-T-P - Credits</th>
<th>Year of Introduction</th>
</tr>
</thead>
<tbody>
<tr>
<td>MA201</td>
<td>LINEAR ALGEBRA AND COMPLEX ANALYSIS</td>
<td>3-1-0-4</td>
<td>2016</td>
</tr>
</tbody>
</table>

Prerequisite: Nil

Course Objectives

COURSE OBJECTIVES

- To equip the students with methods of solving a general system of linear equations.
- To familiarize them with the concept of Eigen values and diagonalization of a matrix which have many applications in Engineering.
- To understand the basic theory of functions of a complex variable and conformal Transformations.

Syllabus

Analyticity of complex functions-Complex differentiation-Conformal mappings-Complex integration-System of linear equations-Eigen value problem

Expected outcome

At the end of the course students will be able to

(i) solve any given system of linear equations
(ii) find the Eigen values of a matrix and how to diagonalize a matrix
(iii) identify analytic functions and Harmonic functions.
(iv) evaluate real definite Integrals as application of Residue Theorem
(v) identify conformal mappings
(vi) find regions that are mapped under certain Transformations

Text Book:

References:

1. Dennis g Zill & Patric D Shanahan-A first Course in Complex Analysis with Applications-Jones&Bartlet Publishers
3. Lipschutz. Linear Algebra, 3e (Schaums Series)McGraw Hill Education India 2005

Course Plan

<table>
<thead>
<tr>
<th>Module</th>
<th>Contents</th>
<th>Hours</th>
<th>Sem. Exam Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Complex differentiation Text 1 [13.3,13.4]</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Limit, continuity and derivative of complex functions</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Analytic Functions</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cauchy–Riemann Equation (Proof of sufficient condition of analyticity & C R Equations in polar form not required)-Laplace’s Equation</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Harmonic functions, Harmonic Conjugate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>II</td>
<td>Conformal mapping: Text 1 [17.1-17.4]</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Geometry of Analytic functions Conformal Mapping,</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mapping $w = z^2$ conformity of $w = e^z$.</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

15%
The mapping \(w = z + \frac{1}{z} \)

Properties of \(w = \frac{1}{z} \)

Circles and straight lines, extended complex plane, fixed points

Special linear fractional Transformations, Cross Ratio, Cross Ratio property-Mapping of disks and half planes

Conformal mapping by \(w = \sin z \& w = \cos z \)

(Assignment: Application of analytic functions in Engineering)

<table>
<thead>
<tr>
<th>FIRST INTERNAL EXAMINATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Complex Integration. Text 1[14.1-14.4][15.4&16.1]</td>
</tr>
<tr>
<td>Definition Complex Line Integrals, First Evaluation Method, Second Evaluation Method</td>
</tr>
<tr>
<td>Cauchy’s Integral Theorem(without proof), Independence of path(without proof), Cauchy’s Integral Theorem for Multiply Connected Domains (without proof)</td>
</tr>
<tr>
<td>Cauchy’s Integral Formula- Derivatives of Analytic Functions(without proof).Application of derivative of Analytical Functions</td>
</tr>
<tr>
<td>Taylor and Maclaurin series(without proof), Power series as Taylor series, Practical methods(without proof)</td>
</tr>
<tr>
<td>Laurent’s series (without proof)</td>
</tr>
</tbody>
</table>

| IV | Residue Integration Text 1 [16.2-16.4] | 2 |
|-------------------------------|----------------------------------|
| Singularities, Zeros, Poles, Essential singularity, Zeros of analytic functions | 2 |
| Residue Integration Method, Formulas for Residues, Several singularities inside the contour Residue Theorem. | 4 |
| Evaluation of Real Integrals (i) Integrals of rational functions of \(\sin \theta \) and \(\cos \theta \) (ii)Integrals of the type \(\int_{0}^{\infty} f(x)dx \) (Type I, Integrals from 0 to \(\infty \)) | 3 |
| (Assignment : Application of Complex integration in Engineering) | | 15% |

<table>
<thead>
<tr>
<th>SECOND INTERNAL EXAMINATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linear system of Equations Text 1(7.3-7.5)</td>
</tr>
<tr>
<td>Linear systems of Equations, Coefficient Matrix, Augmented Matrix</td>
</tr>
<tr>
<td>Gauss Elimination and back substitution, Elementary row operations, Row equivalent systems, Gauss elimination-Three possible cases, Row Echelon form and Information from it.</td>
</tr>
</tbody>
</table>
END SEMESTER EXAM

VI	Linear independence-rank of a matrix	2
Vector Space-Dimension-basis-vector space \mathbb{R}^3	1	
Solution of linear systems, Fundamental theorem of non-homogeneous linear systems (Without proof) - Homogeneous linear systems (Theory only)		
Matrix Eigen value Problem Text 1.(8.1,8.3 &8.4)	20%	
Determination of Eigen values and Eigen vectors - Eigen space	3	
Symmetric, Skew Symmetric and Orthogonal matrices – simple properties (without proof)	2	
Basis of Eigen vectors- Similar matrices- Diagonalization of a matrix- Quadratic forms- Principal axis theorem (without proof)	4	
(Assignment-Some applications of Eigen values(8.2))		

QUESTION PAPER PATTERN:

Maximum Marks : 100
Exam Duration: 3 hours

The question paper will consist of 3 parts.
Part A will have 3 questions of 15 marks each uniformly covering modules I and II. Each question may have two sub questions.
Part B will have 3 questions of 15 marks each uniformly covering modules III and IV. Each question may have two sub questions.
Part C will have 3 questions of 20 marks each uniformly covering modules V and VI. Each question may have three sub questions.
Any two questions from each part have to be answered.
<table>
<thead>
<tr>
<th>Course code</th>
<th>Course Name</th>
<th>L-T-P Credits</th>
<th>Year of Introduction</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS201</td>
<td>DISCRETE COMPUTATIONAL STRUCTURES</td>
<td>3-1-0-4</td>
<td>2016</td>
</tr>
</tbody>
</table>

Pre-requisite: NIL

Course Objectives
1. To introduce mathematical notations and concepts in discrete mathematics that is essential for computing.
2. To train on mathematical reasoning and proof strategies.
3. To cultivate analytical thinking and creative problem solving skills.

Syllabus
Review of Set theory, Countable and uncountable Sets, Review of Permutations and combinations, Pigeon Hole Principle, Recurrence Relations and Solutions, Algebraic systems (semigroups, monoids, groups, rings, fields), Posets and Lattices, Prepositional and Predicate Calculus, Proof Techniques.

Expected Outcome:
Students will be able to
1. identify and apply operations on discrete structures such as sets, relations and functions in different areas of computing.
2. verify the validity of an argument using propositional and predicate logic.
3. construct proofs using direct proof, proof by contraposition, proof by contradiction and proof by cases, and by mathematical induction.
4. solve problems using algebraic structures.
5. solve problems using counting techniques and combinatorics.
6. apply recurrence relations to solve problems in different domains.

Text Books

References:
<table>
<thead>
<tr>
<th>Module</th>
<th>Contents</th>
<th>Hours (54)</th>
<th>End Sem Exam Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Review of elementary set theory: Algebra of sets – Ordered pairs and Cartesian products – Countable and Uncountable sets</td>
<td>3</td>
<td>15 %</td>
</tr>
<tr>
<td></td>
<td>Relations: Relations on sets –Types of relations and their properties – Relational matrix and the graph of a relation – Partitions – Equivalence relations - Partial ordering- Posets – Hasse diagrams - Meet and Join – Infimum and Supremum</td>
<td>6</td>
<td>15 %</td>
</tr>
<tr>
<td></td>
<td>Functions: Injective, Surjective and Bijective functions - Inverse of a function- Composition</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>II</td>
<td>Review of Permutations and combinations, Principle of inclusion exclusion, Pigeon Hole Principle, Recurrence Relations: Introduction- Linear recurrence relations with constant coefficients– Homogeneous solutions – Particular solutions – Total solutions Algebraic systems:- Semigroups and monoids - Homomorphism, Subsemigroups and submonoids</td>
<td>3</td>
<td>15 %</td>
</tr>
<tr>
<td></td>
<td>FIRST INTERNAL EXAM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>III</td>
<td>Algebraic systems (contd…):- Groups, definition and elementary properties, subgroups, Homomorphism and Isomorphism, Generators - Cyclic Groups, Cosets and Lagrange’s Theorem Algebraic systems with two binary operations- rings, fields-sub rings, ring homomorphism</td>
<td>6</td>
<td>15 %</td>
</tr>
<tr>
<td></td>
<td>SECOND INTERNAL EXAM</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>V Propositional Logic:- Propositions – Logical connectives – Truth tables Tautologies and contradictions – Contra positive – Logical</td>
<td>2</td>
<td>20 %</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>
equivalences and implications

<table>
<thead>
<tr>
<th>VI</th>
<th>Predicate Logic:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Proof techniques: Mathematical induction and its variants – Proof by Contradiction – Proof by Counter Example – Proof by Contra positive.</td>
</tr>
</tbody>
</table>

END SEMESTER EXAM

Question Paper Pattern:

1. There will be five parts in the question paper – A, B, C, D, E
2. Part A
 a. Total marks: 12
 b. Four questions each having 3 marks, uniformly covering module I and II; All four questions have to be answered.
3. Part B
 a. Total marks: 18
 b. Three questions each having 9 marks, uniformly covering module I and II; Two questions have to be answered. Each question can have a maximum of three subparts
4. Part C
 a. Total marks: 12
 b. Four questions each having 3 marks, uniformly covering module III and IV; All four questions have to be answered.
5. Part D
 a. Total marks: 18
 b. Three questions each having 9 marks, uniformly covering module III and IV; Two questions have to be answered. Each question can have a maximum of three subparts
6. Part E
 a. Total Marks: 40
 b. Six questions each carrying 10 marks, uniformly covering modules V and VI; four questions have to be answered.
 c. A question can have a maximum of three sub-parts.
7. There should be at least 60% analytical/numerical questions.
Course Plan

<table>
<thead>
<tr>
<th>Module</th>
<th>Contents</th>
<th>Contact Hours (52)</th>
<th>Sem. Exam Marks:%</th>
</tr>
</thead>
</table>

Course Details

<table>
<thead>
<tr>
<th>Course No.</th>
<th>Course Name</th>
<th>L-T-P-Credits</th>
<th>Year of Introduction</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS203</td>
<td>Switching Theory and Logic Design</td>
<td>3-1-0-4</td>
<td>2016</td>
</tr>
</tbody>
</table>

Pre-requisite: Nil

Course Objectives

1. To impart an understanding of the basic concepts of Boolean algebra and digital systems.
2. To impart familiarity with the design and implementation of different types of practically used sequential circuits.
3. To provide an introduction to use Hardware Description Language

Syllabus

Expected Outcome:

Students will be able to:

1. apply the basic concepts of Boolean algebra for the simplification and implementation of logic functions using suitable gates namely NAND, NOR etc.
2. design simple Combinational Circuits such as Adders, Subtractors, Code Convertors, Decoders, Multiplexers, Magnitude Comparators etc.
3. design Sequential Circuits such as different types of Counters, Shift Registers, Serial Adders, Sequence Generators.
4. use Hardware Description Language for describing simple logic circuits.
5. apply algorithms for addition/subtraction operations on Binary, BCD and Floating Point Numbers.

Text Books:

1. Mano M. M., Digital Logic & Computer Design, 4/e, Pearson Education, 2013. [Chapters: 1, 2, 3, 4, 5, 6, 7].
3. M. Morris Mano, Computer System Architecture, 3/e, Pearson Education, 2007. [Chapter 10.1, 10.2, 10.5, 10.6, 10.7].
4. Harris D. M. and, S. L. Harris, Digital Design and Computer Architecture, 2/e, Morgan Kaufmann Publishers, 2013 [Chapter 4.1, 4.2]

References:

<table>
<thead>
<tr>
<th>Section</th>
<th>Topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Number systems – Decimal, Binary, Octal and Hexadecimal – conversion from one system to another – representation of negative numbers – representation of BCD numbers – character representation – character coding schemes – ASCII – EBCDIC etc. Addition, subtraction, multiplication and division of binary numbers (no algorithms). Addition and subtraction of BCD, Octal and Hexadecimal numbers. Representation of floating point numbers – precision – addition, subtraction, multiplication and division of floating point numbers</td>
</tr>
<tr>
<td>IV</td>
<td>Sequential logic circuits: latches and flip-flops – edge-triggering and level-triggering — RS, JK, D and T flip-flops — race condition — master-slave flip-flop. Clocked sequential circuits: state diagram — state reduction and assignment — design with state equations</td>
</tr>
</tbody>
</table>
Question Paper Pattern:

1. There will be five parts in the question paper – A, B, C, D, E
2. Part A
 a. Total marks: 12
 b. Four questions each having 3 marks, uniformly covering module I and II; All four questions have to be answered.
3. Part B
 a. Total marks: 18
 b. Three questions each having 9 marks, uniformly covering module I and II; Two questions have to be answered. Each question can have a maximum of three subparts
4. Part C
 a. Total marks: 12
 b. Four questions each having 3 marks, uniformly covering module III and IV; All four questions have to be answered.
5. Part D
 a. Total marks: 18
 b. Three questions each having 9 marks, uniformly covering module III and IV; Two questions have to be answered. Each question can have a maximum of three subparts
6. Part E
 a. Total Marks: 40
 b. Six questions each carrying 10 marks, uniformly covering modules V and VI; four questions have to be answered.
 c. A question can have a maximum of three sub-parts.
7. There should be at least 60% analytical/design/numerical questions.
Pre-requisite: B101-05 Introduction to Computing and Problem Solving

Course Objectives

1. To impart a thorough understanding of linear data structures such as stacks, queues and their applications.
2. To impart a thorough understanding of non-linear data structures such as trees, graphs and their applications.
3. To impart familiarity with various sorting, searching and hashing techniques and their performance comparison.
4. To impart a basic understanding of memory management.

Syllabus
Introduction to various programming methodologies, terminologies and basics of algorithms analysis, Basic Abstract and Concrete Linear Data Structures, Non-linear Data Structures, Memory Management, Sorting Algorithms, Searching Algorithms, Hashing.

Expected Outcome:
Students will be able to
1. compare different programming methodologies and define asymptotic notations to analyze performance of algorithms.
2. use appropriate data structures like arrays, linked list, stacks and queues to solve real world problems efficiently.
3. represent and manipulate data using nonlinear data structures like trees and graphs to design algorithms for various applications.
4. illustrate and compare various techniques for searching and sorting.
5. appreciate different memory management techniques and their significance.
6. illustrate various hashing techniques.

Text Books:

References
<table>
<thead>
<tr>
<th>Module</th>
<th>Contents</th>
<th>Hours (56)</th>
<th>Sem. Exam Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Introduction to programming methodologies – structured approach, stepwise refinement techniques, programming style, documentation – analysis of algorithms: frequency count, definition of Big O notation, asymptotic analysis of simple algorithms. Recursive and iterative algorithms.</td>
<td>9</td>
<td>15%</td>
</tr>
<tr>
<td>II</td>
<td>Abstract and Concrete Data Structures- Basic data structures – vectors and arrays. Applications, Linked lists:- singly linked list, doubly linked list, Circular linked list, operations on linked list, linked list with header nodes, applications of linked list: polynomials,.</td>
<td>9</td>
<td>15%</td>
</tr>
<tr>
<td>III</td>
<td>Applications of linked list (continued): Memory management, memory allocation and de-allocation. First-fit, best-fit and worst-fit allocation schemes Implementation of Stacks and Queues using arrays and linked list, DEQUEUE (double ended queue). Multiple Stacks and Queues, Applications.</td>
<td>9</td>
<td>15%</td>
</tr>
<tr>
<td>IV</td>
<td>String: - representation of strings, concatenation, substring searching and deletion. Trees: - m-ary Tree, Binary Trees – level and height of the tree, complete-binary tree representation using array, tree traversals (Recursive and non-recursive), applications. Binary search tree – creation, insertion and deletion and search operations, applications.</td>
<td>10</td>
<td>15%</td>
</tr>
<tr>
<td>V</td>
<td>Graphs – representation of graphs, BFS and DFS (analysis not required) applications. Sorting techniques – Bubble sort, Selection Sort, Insertion sort, Merge sort, Quick sort, Heaps and Heap sort. Searching algorithms (Performance comparison expected. Detailed analysis not required)</td>
<td>9</td>
<td>20%</td>
</tr>
<tr>
<td>VI</td>
<td>Linear and Binary search. (Performance comparison expected. Detailed analysis not required) Hash Tables – Hashing functions – Mid square, division, folding, digit analysis, collusion resolution and Overflow handling techniques.</td>
<td>10</td>
<td>20%</td>
</tr>
</tbody>
</table>
Question Paper Pattern:

1. There will be five parts in the question paper – A, B, C, D, E
2. Part A
 a. Total marks : 12
 b. Four questions each having 3 marks, uniformly covering module I and II; All four questions have to be answered.
3. Part B
 a. Total marks : 18
 b. Three questions each having 9 marks, uniformly covering module I and II; Two questions have to be answered. Each question can have a maximum of three subparts
4. Part C
 a. Total marks : 12
 b. Four questions each having 3 marks, uniformly covering module III and IV; All four questions have to be answered.
5. Part D
 a. Total marks : 18
 b. Three questions each having 9 marks, uniformly covering module III and IV; Two questions have to be answered. Each question can have a maximum of three subparts
6. Part E
 a. Total Marks: 40
 b. Six questions each carrying 10 marks, uniformly covering modules V and VI; four questions have to be answered.
 c. A question can have a maximum of three sub-parts.
7. There should be at least 60% analytical/numerical/design questions.
Course code | Course Name | L-T-P -Credits | Year of Introduction |
-------------|-----------------------|----------------|---------------------|
CS207 | ELECTRONIC DEVICES & | 3-0-0-3 | 2016 |
 | CIRCUITS | | |

Pre-requisite: BE101-04 Introduction to Electronics Engg.

Course Objectives:
1. To introduce to the students the fundamental concepts of electronic devices and circuits for engineering applications
2. To develop the skill of analysis and design of various analog circuits using electronic devices
3. To provide comprehensive idea about working principle, operation and applications of electronic circuits
4. To equip the students with a sound understanding of fundamental concepts of operational amplifiers
5. To expose to the diversity of operations that operational amplifiers can perform in a wide range of applications
6. To expose to a variety of electronic circuits/systems using various analog ICs

Syllabus
RC Circuits, Diode Circuits, Regulated power supplies, Field effect transistor, DC analysis of BJT, RC Coupled amplifier, MOSFET amplifiers, Feedback amplifiers, Power amplifiers, Oscillators, Multivibrators, Operational Amplifier and its applications, Timer IC.

Expected Outcome:
Students will be able to
1. explain, illustrate, and design the different electronic circuits using electronic components
2. design circuits using operational amplifiers for various applications

Text Books:
1. David A Bell, Electronic Devices and Circuits, Oxford University Press, 2008

References:

Course Plan

<table>
<thead>
<tr>
<th>Module</th>
<th>Contents</th>
<th>Hours (40)</th>
<th>Sem Exam Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Wave shaping circuits: Sinusoidal and non-sinusoidal wave shapes, Principle and working of RC differentiating and integrating circuits, Conversion of one non-sinusoidal wave shape into another. Clipping circuits - Positive, negative and biased clipper.</td>
<td>5</td>
<td>15%</td>
</tr>
<tr>
<td>Sl. No.</td>
<td>Topic</td>
<td>Details</td>
<td>Marks</td>
</tr>
<tr>
<td>--------</td>
<td>-------</td>
<td>---------</td>
<td>-------</td>
</tr>
<tr>
<td>1</td>
<td>Clamping circuits</td>
<td>Positive, negative and biased clamper. Voltage multipliers- Voltage doubler and tripler. Simple sweep circuit using transistor as a switch.</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Regulated power supplies</td>
<td>Review of simple zener voltage regulator, Shunt and series voltage regulator using transistors, Current limiting and fold back protection, 3 pin regulators-78XX and 79XX, IC 723 and its use as low and high voltage regulators, DC to DC conversion. Circuit/block diagram and working of SMPS.</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>Field effect transistors</td>
<td>JFET – Structure, principle of operation and characteristics, Comparison with BJT. MOSFET- Structure, Enhancement and Depletion types, principle of operation and characteristics.</td>
<td>3</td>
</tr>
</tbody>
</table>

FIRST INTERNAL EXAM

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>Topic</th>
<th>Details</th>
<th>Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Amplifiers</td>
<td>Introduction to transistor biasing, operating point, concept of load line, thermal stability, fixed bias, self bias, voltage divider bias. Classification of amplifiers, RC coupled amplifier - voltage gain and frequency response. Multistage amplifiers - effect of cascading on gain and bandwidth. Feedback in amplifiers - Effect of negative feedback on amplifiers. MOSFET Amplifier- Circuit diagram and working of common source MOSFET amplifier.</td>
<td>7</td>
</tr>
<tr>
<td>4</td>
<td>Oscillators</td>
<td>Classification, criterion for oscillation, analysis of Wien bridge oscillator, Hartley and Crystal oscillator. Non-sinusoidal oscillators: Astable, monostable and bi-stable multivibrators using transistors (Only design equations and working of circuit are required, Analysis not required).</td>
<td>5</td>
</tr>
</tbody>
</table>

SECOND INTERNAL EXAM

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>Topic</th>
<th>Details</th>
<th>Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Operational amplifiers</td>
<td>Differential amplifier, characteristics of op-amps(gain, bandwidth, slew rate, CMRR, offset voltage, offset current), comparison of ideal and practical op-amp(IC741), applications of op-amps- scale changer, sign changer, adder/summing amplifier, subtractor, integrator, differentiator, Schmitt trigger, Wien bridge oscillator.</td>
<td>8</td>
</tr>
</tbody>
</table>
6. **Integrated circuits:** Active filters – Low pass and high pass (first and second order) active filters using op-amp with gain (No analysis required).
 D/A and A/D convertors – important specifications, Sample and hold circuit.
 Binary weighted resistor and R-2R ladder type D/A convertors. (concepts only).
 Flash, dual slope and successive approximation type A/D convertors.
 Circuit diagram and working of Timer IC555, astable and monostable multivibrators using 555.

END SEMESTER EXAM

Question Paper Pattern:

1. There will be five parts in the question paper – A, B, C, D, E

2. **Part A**
 a. Total marks : 12
 b. [Four](#) questions each having 3 marks, uniformly covering module I and II; All four questions have to be answered.

3. **Part B**
 a. Total marks : 18
 b. [Three](#) questions each having 9 marks, uniformly covering module I and II; Two questions have to be answered. Each question can have a maximum of three subparts

4. **Part C**
 a. Total marks : 12
 b. [Four](#) questions each having 3 marks, uniformly covering module III and IV; All four questions have to be answered.

5. **Part D**
 a. Total marks : 18
 b. [Three](#) questions each having 9 marks, uniformly covering module III and IV; Two questions have to be answered. Each question can have a maximum of three subparts

6. **Part E**
 a. Total Marks: 40
 b. [Six](#) questions each carrying 10 marks, uniformly covering modules V and VI; four questions have to be answered.
 c. A question can have a maximum of three sub-parts.

7. There should be at least 60% analytical/numerical/design questions.
<table>
<thead>
<tr>
<th>Course No.</th>
<th>Course Name</th>
<th>L-T-P-Credits</th>
<th>Year of Introduction</th>
</tr>
</thead>
<tbody>
<tr>
<td>HS210</td>
<td>LIFE SKILLS</td>
<td>2-0-2</td>
<td>2016</td>
</tr>
</tbody>
</table>

Course Objectives
- To develop communication competence in prospective engineers.
- To enable them to convey thoughts and ideas with clarity and focus.
- To develop report writing skills.
- To equip them to face interview & Group Discussion.
- To inculcate critical thinking process.
- To prepare them on problem solving skills.
- To provide symbolic, verbal, and graphical interpretations of statements in a problem description.
- To understand team dynamics & effectiveness.
- To create an awareness on Engineering Ethics and Human Values.
- To instill Moral and Social Values, Loyalty and also to learn to appreciate the rights of others.
- To learn leadership qualities and practice them.

Syllabus

Critical Thinking & Problem Solving: Creativity, Lateral thinking, Critical thinking, Multiple Intelligence, Problem Solving, Six thinking hats Mind Mapping & Analytical Thinking.

Teamwork: Groups, Teams, Group Vs Teams, Team formation process, Stages of Group, Group Dynamics, Managing Team Performance & Team Conflicts.

Ethics, Moral & Professional Values: Human Values, Civic Rights, Engineering Ethics, Engineering as Social Experimentation, Environmental Ethics, Global Issues, Code of Ethics like ASME, ASCE, IEEE.

Leadership Skills: Leadership, Levels of Leadership, Making of a leader, Types of leadership, Transactions Vs Transformational Leadership, VUCA Leaders, DART Leadership, Leadership Grid & leadership Formulation.

Expected outcome
- Communicate effectively.
- Make effective presentations.
- Write different types of reports.
- Face interview & group discussion.
- Critically think on a particular problem.
- Solve problems.
- Work in Group & Teams
- Handle Engineering Ethics and Human Values.
- Become an effective leader.
References:
- Shalini Verma (2014); “Development of Life Skills and Professional Practice”; First Edition; Sultan Chand (G/L) & Company
- John C. Maxwell (2014); “The 5 Levels of Leadership”, Centre Street, A division of Hachette Book Group Inc.

Course Plan

<table>
<thead>
<tr>
<th>Module</th>
<th>Contents</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Need for Effective Communication, Levels of communication; Flow of communication; Use of language in communication; Communication networks; Significance of technical communication, Types of barriers; Miscommunication; Noise; Overcoming measures, Listening as an active skill; Types of Listeners; Listening for general content; Listening to fill up information; Intensive Listening; Listening for specific information; Developing effective listening skills; Barriers to effective listening skills. Technical Writing: Differences between technical and literary style, Elements of style; Common Errors, Letter Writing: Formal, informal and demi-official letters; business letters, Job Application: Cover letter, Differences between bio-data, CV and Resume, Report Writing: Basics of Report Writing; Structure of a report; Types of reports. Non-verbal Communication and Body Language: Forms of non-verbal communication; Interpreting body-language cues; Kinesics; Proxemics; Chronemics; Effective use of body language Interview Skills: Types of Interviews; Ensuring success in job interviews; Appropriate use of non-verbal communication, Group Discussion: Differences between group discussion and debate; Ensuring success in group discussions, Presentation Skills: Oral presentation and public speaking skills; business presentations, Technology-based Communication: Netiquettes: effective e-mail messages; power-point presentation; enhancing editing skills using computer software.</td>
<td></td>
</tr>
<tr>
<td>I</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>II</td>
<td>Need for Creativity in the 21st century, Imagination, Intuition, Experience, Sources of Creativity, Lateral Thinking, Myths of creativity</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>

		Sem. Exam Marks
I		2
II		4

<p>| | | 2 |
| III | Critical thinking Vs Creative thinking, Functions of Left Brain & Right brain, Convergent & Divergent Thinking, Critical reading & Multiple Intelligence. | 2 |
| | Steps in problem solving, Problem Solving Techniques, Problem Solving through Six Thinking Hats, Mind Mapping, Forced Connections. | 2 |
| | Problem Solving strategies, Analytical Thinking and quantitative reasoning expressed in written form, Numeric, symbolic, and graphic reasoning, Solving application problems. | 2 |
| | Introduction to Groups and Teams, Team Composition, Managing Team Performance, Importance of Group, Stages of Group, Group Cycle, Group thinking, getting acquainted, Clarifying expectations. | 3 |
| | Group Problem Solving, Achieving Group Consensus. | 2 |
| | Group Dynamics techniques, Group vs Team, Team Dynamics, Teams for enhancing productivity, Building & Managing Successful Virtual Teams. Managing Team Performance & Managing Conflict in Teams. | 3 |
| | Working Together in Teams, Team Decision-Making, Team Culture & Power, Team Leader Development. | 2 |
| IV | Morals, Values and Ethics, Integrity, Work Ethic, Service Learning, Civic Virtue, Respect for Others, Living Peacefully. | 3 |
| | Caring, Sharing, Honesty, Courage, Valuing Time, Cooperation, Commitment, Empathy, Self-Confidence, Character, Spirituality, Senses of 'Engineering Ethics’, variety of moral issued, Types of inquiry, moral dilemmas, moral autonomy, Kohlberg's theory, Gilligan's theory, Consensus and controversy, Models of Professional Roles, Theories about right action, Self-interest, customs and religion, application of ethical theories. | 2 |
| | Engineering as experimentation, engineers as responsible experimenters, Codes of ethics, Balanced outlook on. | 3 |
| | The challenger case study, Multinational corporations, Environmental ethics, computer ethics, Weapons development, engineers as managers, consulting | 2 |</p>
<table>
<thead>
<tr>
<th>V</th>
<th>Introduction, a framework for considering leadership, entrepreneurial and moral leadership, vision, people selection and development, cultural dimensions of leadership, style, followers, crises. Growing as a leader, turnaround leadership, gaining control, trust, managing diverse stakeholders, crisis management Implications of national culture and multicultural leadership Types of Leadership, Leadership Traits. Leadership Styles, VUCA Leadership, DART Leadership, Transactional vs Transformational Leaders, Leadership Grid, Effective Leaders, making of a Leader, Formulate Leadership</th>
</tr>
</thead>
</table>

EVALUATION SCHEME

Internal Evaluation
(Conducted by the College)

Total Marks: 100

Part – A
(To be started after completion of Module 1 and to be completed by 30th working day of the semester)

1. Group Discussion – Create groups of about 10 students each and engage them on a GD on a suitable topic for about 20 minutes. Parameters to be used for evaluation is as follows;

 (i) Communication Skills – 10 marks
 (ii) Subject Clarity – 10 marks
 (iii) Group Dynamics - 10 marks
 (iv) Behaviors & Mannerisms - 10 marks

 (Marks: 40)

Part – B
(To be started from 31st working day and to be completed before 60th working day of the semester)

2. Presentation Skills – Identify a suitable topic and ask the students to prepare a presentation (preferably a power point presentation) for about 10 minutes. Parameters to be used for evaluation is as follows;
Communication Skills* - 10 marks
Platform Skills** - 10 marks
Subject Clarity/Knowledge - 10 marks

(Marks: 30)

* Language fluency, auditability, voice modulation, rate of speech, listening, summarizes key learnings etc.

** Postures/Gestures, Smiles/Expressions, Movements, usage of floor area etc.

Part – C

(To be conducted before the termination of semester)

3. Sample Letter writing or report writing following the guidelines and procedures. Parameters to be used for evaluation is as follows;

(i) Usage of English & Grammar - 10 marks
(ii) Following the format - 10 marks
(iii) Content clarity - 10 marks

(Marks: 30)

External Evaluation
(Conducted by the University)

Total Marks: 50
Time: 2 hrs.

Part – A

Short Answer questions

There will be one question from each area (five questions in total) will be asked for the examination. Each question should be written in about maximum of 400 words. Parameters to be used for evaluation are as follows;

(i) Content Clarity/Subject Knowledge
(ii) Presentation style
(iii) Organization of content

(Marks: 5 x 6 = 30)
Part – B

Case Study

The students will be given a case study with questions at the end the students have to analyze the case and answer the question at the end. Parameters to be used for evaluation are as follows;

(i) Analyze the case situation
(ii) Key players/characters of the case
(iii) Identification of the problem (both major & minor if exists)
(iv) Bring out alternatives
(v) Analyze each alternative against the problem
(vi) Choose the best alternative
(vii) Implement as solution
(viii) Conclusion
(ix) Answer the question at the end of the case

(Marks: 1 x 20 = 20)
<table>
<thead>
<tr>
<th>Course No.</th>
<th>Course Name</th>
<th>L-T-P - Credits</th>
<th>Year of Introduction</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS231</td>
<td>DATA STRUCTURES</td>
<td>0-0-3-1</td>
<td>2016</td>
</tr>
</tbody>
</table>

Pre-requisite: CS205 Data structures

Course Objectives

1. To implement basic linear and non-linear data structures and their major operations.
2. To implement applications using these data structures.
3. To implement algorithms for various sorting techniques.

List of Exercises/Experiments: (Minimum 12 are to be done)

1. Implementation of Stack and Multiple stacks using one dimensional array. **
2. Application problems using stacks: Infix to post fix conversion, postfix and pre-fix evaluation, MAZE problem etc. **
4. Implementation of various linked list operations. **
5. Implementation of stack, queue and their applications using linked list.
6. Implementation of trees using linked list
7. Representation of polynomials using linked list, addition and multiplication of polynomials. **
8. Implementation of binary trees using linked lists and arrays- creations, insertion, deletion and traversal. **
9. Implementation of binary search trees – creation, insertion, deletion, search
10. Application using trees
11. Implementation of sorting algorithms – bubble, insertion, selection, quick (recursive and non-recursive), merge sort (recursive and non-recursive), and heap sort,**
12. Implementation of searching algorithms – linear search, binary search,**
13. Representation of graphs and computing various parameters (in degree, out degree etc.) - adjacency list, adjacency matrix.
15. Implementation of hash table using various mapping functions, various collision and overflow resolving schemes,**
16. Implementation of various string operations.
17. Simulation of first-fit, best-fit and worst-fit allocations.

18. Simulation of a basic memory allocator and garbage collector using doubly linked list.

**mandatory.

Expected Outcome:
Students will be able to:

1. appreciate the importance of structure and abstract data type, and their basic usability in different applications.
2. analyze and differentiate different algorithms based on their time complexity.
3. implement linear and non-linear data structures using linked lists.
4. understand and apply various data structure such as stacks, queues, trees, graphs, etc. to solve various computing problems.
5. implement various kinds of searching and sorting techniques, and decide when to choose which technique.
6. identify and use a suitable data structure and algorithm to solve a real world problem.
<table>
<thead>
<tr>
<th>Course No.</th>
<th>Course Name</th>
<th>L-T-P - Credits</th>
<th>Year of Introduction</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS233</td>
<td>ELECTRONICS CIRCUITS LAB</td>
<td>0-0-3-1</td>
<td>2016</td>
</tr>
</tbody>
</table>

Pre-requisite: CS207 Electronic devices & circuits

Course Objectives:
1. To introduce the working of analog electronic circuits.
2. To design, implement and demonstrate analog circuits using electronic components.
3. To provide hands-on experience to the students so that they are able to put theoretical concepts to practice.
4. To use computer simulation tools such as PSPICE, or Multisim to the simulation of electronic circuits.
5. To create an ability to develop descriptions, explanations, predictions and models using evidence.
6. To create an ability to communicate effectively the scientific procedures and explanations about the experiments in oral/report forms.

List of Exercises/Experiments:
(Minimum 13 experiments are to be done in the semester, at least 6 each should be selected from the first(Exp. 1-10) and second(Exp. 11-20) half. Experiment no. 18 is compulsory).

1. Forward and reverse characteristics of PN diode and Zener diode
2. Input and output characteristics of BJT in CE configuration and evaluation of parameters
3. RC integrating and differentiating circuits - Transient response with different time constant
4. RC low pass and high pass circuits - Frequency response with sinusoidal input
5. Clipping circuits (Positive, negative and biased) - Transient and transfer characteristics
6. Clamping circuits (Positive, negative and biased) - Transient characteristics
7. Bridge Rectifier - with and without filter - ripple factor and regulation
8. Simple Zener regulator - Line and load characteristics
9. RC coupled CE amplifier – Mid band gain and frequency response
10. RC phase shift or Wien bridge oscillator using transistor
11. Astable and Monostable multivibrators using transistors
12. Series voltage regulator (Two transistors) - Line and load characteristics
13. Voltage regulator using LM 723 - Line and load characteristics
14. Astable and mono stable multivibrators using 555 Timer
15. Inverting and non-inverting amplifier using op-amp IC741
16. Instrumentation amplifier using op-amp IC741
17. RC phase shift or Wien bridge oscillator using op-amp IC741
18. Simulation of simple circuits (at least 6 from above) using any SPICE software (Transient, AC and DC analysis)
Expected Outcome:

Students will be able to:

1. identify basic electronic components, design and develop electronic circuits.
2. Design and demonstrate functioning of various discrete analog circuits.
3. Be familiar with computer simulation of electronic circuits and how to use it proficiently for design and development of electronic circuits.
4. Understand the concepts and their applications in engineering.
5. Communicate effectively the scientific procedures and explanations in formal technical presentations/reports.
Course Plan

<table>
<thead>
<tr>
<th>Module</th>
<th>Contents</th>
<th>Hours</th>
<th>Sem. Exam Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Discrete Probability Distributions. (Relevant topics in section 4.1,4.2,4.4,4.6 Text1)
 Discrete Random Variables, Probability distribution function, Cumulative distribution function.
 Mean and Variance of Discrete Probability Distribution.
 Binomial Distribution-Mean and variance.
 Poisson Approximation to the Binomial Distribution. Poisson distribution-Mean and variance.</td>
<td>2, 2, 2</td>
<td>15%</td>
</tr>
</tbody>
</table>

Course No.
MA202

Course Name
Probability distributions, Transforms and Numerical Methods

L-T-P - Credits
3-1-0-4

Year of Introduction
2016

Prerequisite: Nil

Course Objectives
- To introduce the concept of random variables, probability distributions, specific discrete and continuous distributions with practical application in various Engineering and social life situations.
- To know Laplace and Fourier transforms which has wide application in all Engineering courses.
- To enable the students to solve various engineering problems using numerical methods.

Syllabus
- Discrete random variables and Discrete Probability Distribution.

- Continuous Random variables and Continuous Probability Distribution.

- Fourier transforms.

- Laplace Transforms.

- Numerical methods-solution of Algebraic and transcendental Equations, Interpolation.

Expected outcome
After the completion of the course student is expected to have concept of
(i) Discrete and continuous probability density functions and special probability distributions.
(ii) Laplace and Fourier transforms and apply them in their Engineering branch
(iii) numerical methods and their applications in solving Engineering problems.

Text Books:

References:
<table>
<thead>
<tr>
<th>II</th>
<th>Continuous Probability Distributions. (Relevant topics in section 5.1,5.2,5.5,5.7 Text1)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Continuous Random Variable, Probability density function, Mean and variance.</td>
</tr>
<tr>
<td></td>
<td>Cumulative density function, Mean and variance.</td>
</tr>
<tr>
<td></td>
<td>Normal Distribution, Mean and variance (without proof).</td>
</tr>
<tr>
<td></td>
<td>Uniform Distribution, Mean and variance.</td>
</tr>
<tr>
<td></td>
<td>Exponential Distribution, Mean and variance.</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>FIRST INTERNAL EXAMINATION</td>
<td></td>
</tr>
<tr>
<td>III</td>
<td>Fourier Integrals and transforms. (Relevant topics in section 11.7, 11.8, 11.9 Text2)</td>
</tr>
<tr>
<td></td>
<td>Fourier Integrals. Fourier integral theorem (without proof).</td>
</tr>
<tr>
<td></td>
<td>Fourier Transform and inverse transform.</td>
</tr>
<tr>
<td></td>
<td>Fourier Sine & Cosine Transform, inverse transform.</td>
</tr>
<tr>
<td>IV</td>
<td>Laplace transforms. (Relevant topics in section 6.1,6.2,6.3,6.5,6.6 Text2)</td>
</tr>
<tr>
<td></td>
<td>Laplace Transforms, linearity, first shifting Theorem.</td>
</tr>
<tr>
<td></td>
<td>Transform of derivative and Integral, Inverse Laplace transform, Solution of ordinary differential equation using Laplace transform.</td>
</tr>
<tr>
<td></td>
<td>Unit step function, second shifting theorem.</td>
</tr>
<tr>
<td></td>
<td>Convolution Theorem (without proof).</td>
</tr>
<tr>
<td></td>
<td>Differentiation and Integration of transforms.</td>
</tr>
<tr>
<td>SECOND INTERNAL EXAMINATION</td>
<td></td>
</tr>
<tr>
<td>V</td>
<td>Numerical Techniques. (Relevant topics in section 19.1,19.2,19.3 Text2)</td>
</tr>
<tr>
<td></td>
<td>Solution Of equations by Iteration, Newton- Raphson Method.</td>
</tr>
<tr>
<td></td>
<td>Interpolation of Unequal intervals-Lagrange’s Interpolation formula.</td>
</tr>
<tr>
<td></td>
<td>Interpolation of Equal intervals-Newton’s forward difference formula, Newton’s Backward difference formula.</td>
</tr>
<tr>
<td>VI</td>
<td>Numerical Techniques. (Relevant topics in section 19.5,20.1,20.3, 21.1 Text2)</td>
</tr>
<tr>
<td></td>
<td>Solution to linear System- Gauss Elimination, Gauss Seidal Iteration Method.</td>
</tr>
<tr>
<td></td>
<td>Numeric Integration-Trapezoidal Rule, Simpson’s 1/3 Rule.</td>
</tr>
<tr>
<td></td>
<td>Numerical solution of first order ODE-Euler method, Runge-Kutta Method (fourth order).</td>
</tr>
<tr>
<td>END SEMESTER EXAM</td>
<td></td>
</tr>
</tbody>
</table>
QUESTION PAPER PATTERN:

Maximum Marks : 100 Exam Duration: 3 hours

The question paper will consist of 3 parts.
Part A will have 3 questions of 15 marks each uniformly covering modules I and II. Each question may have two sub questions.

Part B will have 3 questions of 15 marks each uniformly covering modules III and IV. Each question may have two sub questions.

Part C will have 3 questions of 20 marks each uniformly covering modules V and VI. Each question may have three sub questions.

Any two questions from each part have to be answered.
<table>
<thead>
<tr>
<th>Course code</th>
<th>Course Name</th>
<th>L-T-P -Credits</th>
<th>Year of Introduction</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS202</td>
<td>Computer Organization and Architecture</td>
<td>3-1-0-4</td>
<td>2016</td>
</tr>
</tbody>
</table>

Pre-requisite: CS203 Switching theory and logic design

Course Objectives
1. To impart an understanding of the internal organization and operations of a computer.
2. To introduce the concepts of processor logic design and control logic design.

Syllabus
Fundamental building blocks and functional units of a computer. Execution phases of an instruction. Arithmetic Algorithms. Design of the processing unit – how arithmetic and logic operations are performed. Design of the control unit – hardwired and microprogrammed control. I/O organisation – interrupts, DMA, different interface standards. Memory Subsystem – different types.

Expected outcome
Students will be able to:
1. identify the basic structure and functional units of a digital computer.
2. analyze the effect of addressing modes on the execution time of a program.
3. design processing unit using the concepts of ALU and control logic design.
4. identify the pros and cons of different types of control logic design in processors.
5. select appropriate interfacing standards for I/O devices.
6. identify the roles of various functional units of a computer in instruction execution.

Text Books:

References:

Course Plan

<table>
<thead>
<tr>
<th>Module</th>
<th>Contents</th>
<th>Hours (51)</th>
<th>Sem.ExamMarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Basic Structure of computers – functional units – basic operational concepts – bus structures – software. Memory locations and addresses – memory operations – instructions and instruction sequencing – addressing modes – ARM Example (programs not required). Basic I/O operations – stacks subroutine calls.</td>
<td>6</td>
<td>15%</td>
</tr>
</tbody>
</table>
| II | **Basic processing unit** – fundamental concepts – instruction cycle - execution of a complete instruction –multiple- bus organization – sequencing of control signals.

Arithmetic algorithms: Algorithms for multiplication and division of binary and BCD numbers – array multiplier –Booth’s multiplication algorithm – restoring and non-restoring division – algorithms for floating point, multiplication and division. | 10 | 15% |
| III | **I/O organization:** accessing of I/O devices – interrupts –direct memory access –buses –interface circuits –standard I/O interfaces (PCI, SCSI, USB) | 8 | 15% |
| IV | **Memory system:** basic concepts –semiconductor RAMs –memory system considerations – semiconductor ROMs –flash memory –cache memory and mapping functions. | 9 | 15% |
| V | **Processor Logic Design:** Register transfer logic – inter register transfer – arithmetic, logic and shift micro operations –conditional control statements.

Processor organization: –design of arithmetic unit, logic unit, arithmetic logic unit and shifter –status register –processor unit –design of accumulator. | 9 | 20% |
| VI | **Control Logic Design:** Control organization – design of hardwired control –control of processor unit –PLA control. **Micro-programmed control:** Microinstructions –horizontal and vertical micro instructions – micro-program sequencer –micro programmed CPU organization. | 9 | 20% |

FIRST INTERNAL EXAMINATION

SECOND INTERNAL EXAMINATION

END SEMESTER EXAM
Question Paper Pattern:

1. There will be five parts in the question paper – A, B, C, D, E
2. Part A
 a. Total marks : 12
 b. Four questions each having 3 marks, uniformly covering module I and II; All four questions have to be answered.
3. Part B
 a. Total marks : 18
 b. Three questions each having 9 marks, uniformly covering module I and II; Two questions have to be answered. Each question can have a maximum of three subparts
4. Part C
 a. Total marks : 12
 b. Four questions each having 3 marks, uniformly covering module III and IV; All four questions have to be answered.
5. Part D
 a. Total marks : 18
 b. Three questions each having 9 marks, uniformly covering module III and IV; Two questions have to be answered. Each question can have a maximum of three subparts
6. Part E
 a. Total Marks: 40
 b. Six questions each carrying 10 marks, uniformly covering modules V and VI; four questions have to be answered.
 c. A question can have a maximum of three sub-parts.
7. There should be at least 60% analytical/numerical/design questions.
<table>
<thead>
<tr>
<th>Course code</th>
<th>Course Name</th>
<th>L-T-P -Credits</th>
<th>Year of Introduction</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS204</td>
<td>Operating Systems</td>
<td>3-1-0-4</td>
<td>2016</td>
</tr>
</tbody>
</table>

Pre-requisite: CS205 Data structures

Course Objectives
1. To impart fundamental understanding of the purpose, structure, functions of operating system.
2. To impart the key design issues of an operating system

Syllabus
Basic concepts of Operating System, its structure, Process management, inter-process communication, process synchronization, CPU Scheduling, deadlocks, Memory Management, swapping, segmentation, paging, Storage Management - disk scheduling, RAID, File System Interface-implementation. Protection.

Expected outcome
Students will be able to:
1. identify the significance of operating system in computing devices.
2. exemplify the communication between application programs and hardware devices through system calls.
3. compare and illustrate various process scheduling algorithms.
4. apply appropriate memory and file management schemes.
5. illustrate various disk scheduling algorithms.
6. appreciate the need of access control and protection in an operating system.

Text Book:

References:

Course Plan

<table>
<thead>
<tr>
<th>Module</th>
<th>Contents</th>
<th>Hours (52)</th>
<th>Sem. Exam marks</th>
</tr>
</thead>
</table>
I **Introduction:** Functions of an operating system. Single processor, multiprocessor and clustered systems – overview. Kernel Data Structures – Operating Systems used in different computing environments.

| II | **Process Management:** | 9 | 15% |

Inter Process Communication: Shared Memory, Message Passing, Pipes.

FIRST INTERNAL EXAMINATION

| III | **Process Synchronization:** | 9 | 15% |
| Critical Section- Peterson's solution. Synchronization – Locks, Semaphores, Monitors, Classical Problems – Producer Consumer, Dining Philosophers and Readers-Writers Problems |

| IV | **CPU Scheduling** – Scheduling Criteria – Scheduling Algorithms. |
| 8 | 15% |

SECOND INTERNAL EXAMINATION

| V | **Memory Management:** | 9 | 20% |
| Main Memory – Swapping – Contiguous Memory allocation – Segmentation – Paging – Demand paging |

| VI | **Storage Management:** | 10 | 20% |

END SEMESTER EXAM
Question Paper Pattern:

1. There will be five parts in the question paper – A, B, C, D, E
2. Part A
 a. Total marks : 12
 b. **Four** questions each having **3** marks, uniformly covering module I and II; All **four** questions have to be answered.
3. Part B
 a. Total marks : 18
 b. **Three** questions each having **9** marks, uniformly covering module I and II; **Two** questions have to be answered. Each question can have a maximum of three subparts
4. Part C
 a. Total marks : 12
 b. **Four** questions each having **3** marks, uniformly covering module III and IV; All **four** questions have to be answered.
5. Part D
 a. Total marks : 18
 b. **Three** questions each having **9** marks, uniformly covering module III and IV; **Two** questions have to be answered. Each question can have a maximum of three subparts
6. Part E
 a. Total Marks: 40
 b. **Six** questions each carrying 10 marks, uniformly covering modules V and VI; **four** questions have to be answered.
 c. A question can have a maximum of three sub-parts.
7. There should be at least 60% analytical/numerical/design questions.
Course Code: CS206
Course Name: Object Oriented Design and Programming
L-T-P - Credits: 2-1-0-3
Year of Introduction: 2016

Pre-requisite: CS205 Data structures

Course Objectives
1. To introduce basic concepts of object oriented design techniques.
2. To give a thorough understanding of Java language.
3. To provide basic exposure to the basics of multithreading, database connectivity etc.
4. To impart the techniques of creating GUI based applications.

Syllabus
Object oriented concepts, Object oriented systems development life cycle, Unified Modeling Language, Java Overview, Classes and objects, Parameter passing, Overloading, Inheritance, Overriding, Packages, Exception Handling, Input/Output, Threads and multithreading, Applets, Event Handling mechanism, Working with frames and graphics, AWT Controls, Swings, Java database connectivity.

Expected outcome.
Students will be able to:
1. apply object oriented principles in software design process.
2. develop Java programs for real applications using java constructs and libraries.
3. understand and apply various object oriented features like inheritance, data abstraction, encapsulation and polymorphism to solve various computing problems using Java language.
4. implement Exception Handling in java.
5. use graphical user interface and Event Handling in java.
6. develop and deploy Applet in java.

Text Books:

References:
3. Flanagan D., Java in A Nutshell, 5/e, O'Reilly, 2005.
5. Sierra K., Head First Java, 2/e, O'Reilly, 2005.
7.

Course Plan

<table>
<thead>
<tr>
<th>Module</th>
<th>Contents</th>
<th>Hours (42)</th>
<th>Sem. ExamMarks</th>
</tr>
</thead>
</table>
Java Overview: Java virtual machine, data types, operators, control statements, Introduction to Java programming. | 08 | 15% |
<table>
<thead>
<tr>
<th>II</th>
<th>Classes fundamentals, objects, methods, constructors, parameter passing, overloading, access control keywords.</th>
<th>07</th>
<th>15%</th>
</tr>
</thead>
<tbody>
<tr>
<td>III</td>
<td>Inheritance basics, method overriding, abstract classes, interface. Defining and importing packages. Exception handling fundamentals, multiple catch and nested try statements.</td>
<td>06</td>
<td>15%</td>
</tr>
<tr>
<td>IV</td>
<td>Input/Output: files, stream classes, reading console input. Threads: thread model, use of Thread class and Runnable interface, thread synchronization, multithreading.</td>
<td>06</td>
<td>15%</td>
</tr>
<tr>
<td>V</td>
<td>String class - basics. Applet basics and methods. Event Handling: delegation event model, event classes, sources, listeners.</td>
<td>07</td>
<td>20%</td>
</tr>
<tr>
<td>VI</td>
<td>Introduction to AWT: working with frames, graphics, color, font. AWT Control fundamentals. Swing overview. Java database connectivity: JDBC overview, creating and executing queries, dynamic queries.</td>
<td>08</td>
<td>20%</td>
</tr>
</tbody>
</table>

SECOND INTERNAL EXAMINATION

1. There will be five parts in the question paper – A, B, C, D, E
2. Part A
 a. Total marks : 12
 b. Four questions each having 3 marks, uniformly covering module I and II; All four questions have to be answered.
3. Part B
 a. Total marks : 18
 b. Three questions each having 9 marks, uniformly covering module I and II; Two questions have to be answered. Each question can have a maximum of three subparts
4. Part C
 a. Total marks : 12
 b. Four questions each having 3 marks, uniformly covering module III and IV; All four questions have to be answered.
5. Part D
 a. Total marks : 18
 b. Three questions each having 9 marks, uniformly covering module III and IV; Two questions have to be answered. Each question can have a maximum of three subparts
6. Part E
 a. Total Marks: 40
 b. Six questions each carrying 10 marks, uniformly covering modules V and VI; four questions have to be answered.
 c. A question can have a maximum of three sub-parts.

7. There should be at least 60% analytical/design questions.
Course Code: CS208
Course Name: Principles of Database Design
Credits: 3
Year of Introduction: 2016

Pre-requisite: CS205 Data structures

Course Objectives

1. To impart the basic understanding of the theory and applications of database management systems.
2. To give basic level understanding of internals of database systems.
3. To expose to some of the recent trends in databases.

Syllabus:

Types of data, database and DBMS, Languages and users. Software Architecture, E-R and Extended E-R Modelling, Relational Model – concepts and languages, relational algebra and tuple relational calculus, SQL, views, assertions and triggers, HLL interfaces, relational db design, FDs and normal forms, Secondary storage organization, indexing and hashing, query optimization, concurrent transaction processing and recovery principles, recent topics.

Expected outcome.

Students will be able to:

1. define, explain and illustrate the fundamental concepts of databases.
2. construct an Entity-Relationship (E-R) model from specifications and to perform the transformation of the conceptual model into corresponding logical data structures.
3. model and design a relational database following the design principles.
4. develop queries for relational database in the context of practical applications.
5. define, explain and illustrate fundamental principles of data organization, query optimization and concurrent transaction processing.
6. appreciate the latest trends in databases.

Text Books:

References:

Course Plan

<table>
<thead>
<tr>
<th>Module</th>
<th>Contents</th>
<th>Hours (42)</th>
<th>Sem. Exam Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Introduction: Data: structured, semi-structured and unstructured data, Concept & Overview of DBMS, Data Models, Database Languages, Database Administrator, Database Users, Three Schema architecture of DBMS. Database architectures and classification. (Reading: ElmasriNavathe, Ch. 1 and 2. Additional Reading: Silberschatz, Korth, Ch. 1) Entity-Relationship Model: Basic concepts, Design Issues, Mapping Constraints,</td>
<td>06</td>
<td>15%</td>
</tr>
<tr>
<td>Section</td>
<td>Topic</td>
<td>Reading</td>
<td>Exam Date</td>
</tr>
<tr>
<td>---------</td>
<td>---</td>
<td>--</td>
<td>-----------</td>
</tr>
<tr>
<td>II</td>
<td>Keys, Entity-Relationship Diagram, Weak Entity Sets, Relationships of degree greater than 2</td>
<td>(Reading: ElmasriNavathe, Ch. 7.1-7.8)</td>
<td>06</td>
</tr>
<tr>
<td></td>
<td>Relational Model: Structure of relational Databases, Integrity Constraints, synthesizing ER diagram to relational schema</td>
<td>(Reading: ElmasriNavathe, Ch. 3 and 8.1, Additional Reading: Silbershatz, Korth, Ch. 2.1-2.4)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Database Languages: Concept of DDL and DML relational algebra</td>
<td>(Reading: Silbershatz, Korth, Ch 2.5-2.6 and 6.1-6.2, ElmasriNavathe, Ch. 6.1-6.5)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>FIRST INTERNAL EXAM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>III</td>
<td>Structured Query Language (SQL): Basic SQL Structure, examples, Set operations, Aggregate Functions, nested sub-queries</td>
<td>(Reading: ElmasriNavathe, Ch. 4 and 5.1)</td>
<td>07</td>
</tr>
<tr>
<td></td>
<td>Views, assertions and triggers</td>
<td>(Reading: ElmasriNavathe, Ch. 5.2-5.3, Silbershatz, Korth Ch. 5.3)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Functions, Procedures and HLL interfaces</td>
<td>(Reading: Silbershatz, Korth Ch. 5.1-5.2)</td>
<td></td>
</tr>
<tr>
<td>IV</td>
<td>Relational Database Design: Different anomalies in designing a database, normalization, functional dependency (FD), Armstrong’s Axioms, closures, Equivalence of FDs, minimal Cover (proofs not required). Normalization using functional dependencies, INF, 2NF, 3NF and BCNF, lossless and dependency preserving decompositions</td>
<td>(Reading: Elmasri and Navathe, Ch. 14.1-14.5, 15.1-15.2. Additional Reading: Silbershatz, Korth Ch. 8.1-8.5)</td>
<td>07</td>
</tr>
<tr>
<td></td>
<td>SECOND INTERNAL EXAM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>V</td>
<td>Physical Data Organization: index structures, primary, secondary and clustering indices, Single level and Multi-level indexing, B-Trees and B+-Trees (basic structure only, algorithms not needed), Indexing on multiple keys</td>
<td>(Reading Elmasri and Navathe, Ch. 17.1-17.4)</td>
<td>08</td>
</tr>
<tr>
<td></td>
<td>Query Optimization: algorithms for relational algebra operations, heuristics-based query optimization, Cost-based query optimization</td>
<td>(Reading Elmasri and Navathe, Ch. 18.1-18.3, 18.6-18.8)</td>
<td></td>
</tr>
<tr>
<td>VI</td>
<td>Transaction Processing Concepts: overview of concurrency control and recovery acid properties, serial and concurrent schedules, conflict serializability, Two-phase locking, failure classification, storage structure, stable storage, log based recovery, deferred database</td>
<td></td>
<td>08</td>
</tr>
</tbody>
</table>
modification, check-pointing, (Reading Elmasri and Navathe, Ch. 20.1-20.5 (except 20.5.4-20.5.5) , Silbershatz, Korth Ch. 15.1 (except 15.1.4-15.1.5), Ch. 16.1 – 16.5) Recent topics (preliminary ideas only): Semantic Web and RDF(Reading: Powers Ch.1, 2), GIS, biological databases (Reading: Elmasri and Navathe Ch. 23.3-23.4) Big Data (Reading: Plunkett and Macdonald, Ch. 1, 2)

END SEMESTER EXAM

Question Paper Pattern:

1. There will be five parts in the question paper – A, B, C, D, E
2. Part A
 a. Total marks : 12
 b. Four questions each having 3 marks, uniformly covering module I and II; All four questions have to be answered.
3. Part B
 a. Total marks : 18
 b. Three questions each having 9 marks, uniformly covering module I and II; Two questions have to be answered. Each question can have a maximum of three subparts
4. Part C
 a. Total marks : 12
 b. Four questions each having 3 marks, uniformly covering module III and IV; All four questions have to be answered.
5. Part D
 a. Total marks : 18
 b. Three questions each having 9 marks, uniformly covering module III and IV; Two questions have to be answered. Each question can have a maximum of three subparts
6. Part E
 a. Total Marks: 40
 b. Six questions each carrying 10 marks, uniformly covering modules V and VI; four questions have to be answered.
 c. A question can have a maximum of three sub-parts.
7. There should be at least 60% analytical/numerical/design questions.
<table>
<thead>
<tr>
<th>Course Number</th>
<th>Course Name</th>
<th>L-T-P</th>
<th>Credits</th>
<th>Year of introduction</th>
</tr>
</thead>
<tbody>
<tr>
<td>HS200</td>
<td>Business Economics</td>
<td>3-0-0</td>
<td>3</td>
<td>2016</td>
</tr>
</tbody>
</table>

Course Objectives

> To familiarize the prospective engineers with elementary Principles of Economics and Managerial Economics;
> To acquaint the students with tools and techniques that are useful in their profession in Managerial Decision Making which will enhance their employability;
> To gain understanding of some Macroeconomic concepts to improve their ability to understand the business climate;
> To prepare and understand balance sheet at an elementary level.

Syllabus

Expected Outcome

A student who has undergone this course

> would be able to make investment decisions based on capital budgeting methods in alignment with microeconomic and macroeconomic theories.
> would be able to analyse the profitability of the firm, economy of operation, determination of price under various market situations with good grasp on the effect of trade cycles in business.
> would gain knowledge on Monetary theory, measures by RBI in controlling interest rate and emerging concepts like Bit Coin.
> would gain knowledge of elementary accounting concepts used for preparing balance sheet and interpretation of balance sheet
<table>
<thead>
<tr>
<th>Unit</th>
<th>Topics</th>
<th>Hours Allotted</th>
<th>Percentage Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Nature of Economics Definitions of Economics and their limitations, Economic Problems (2 Hrs.), Economic Systems, meaning of Business or Managerial Economics (2 Hrs.) and its role and relevance in managerial decision making in an industrial setting (2 Hrs).</td>
<td>6</td>
<td>15%</td>
</tr>
<tr>
<td>II</td>
<td>Demand and Supply Analysis Demand Curve, Demand function (2 Hrs.), Elasticity of demand and its estimation (2 Hrs.), Supply curve, equilibrium price and price mechanism (2 Hrs).</td>
<td>6</td>
<td>15%</td>
</tr>
</tbody>
</table>

FIRST INTERNAL EXAM

| III | **Production Economics** Economies of Scale and Diseconomies of Scale (1 Hr.), Production and Cost Functions. Factors of Production (2 Hrs.), Law of Diminishing marginal Productivity. Construction and analysis of Break Even Charts (3 Hrs.) | 6 | 15% |
| IV | **Market Structure and Price-Output Decisions** Price and output determination under Perfect Competition, Monopoly and Monopolistic Competition (3 Hrs.). Collusion and Cartel, Nash Equilibrium (3 Hrs.) | 6 | 15% |

SECOND INTERNAL EXAM

| V | **Money, National Income and Taxation** Money, Emerging Bit Coin concept, Quantity Theory of Money, Interest Rate Management (2 Hrs.), Open Market Operations by RBI, Selective Credit Controls, SLR, CRR (2 Hrs), Definition & Measurement of National Income, methods, sectors of economy (3 Hrs), inflation, deflation, trade cycles- Value-Added Tax (2 Hrs). | 9 | 20% |
| VI | **Investment Decisions and Balance Sheet Analysis** Capital Budgeting, Investment Analysis – NPV, IRR, Profitability Index, ARR, Payback Period (3 Hrs), Depreciation, Time value of money. Business Forecasting– Elementary techniques (2 Hrs). Balance sheet preparation principles and interpretation (4 Hrs) | 9 | 20% |

END SEMESTER EXAM

Text Book

References

<table>
<thead>
<tr>
<th>Course code</th>
<th>Course Name</th>
<th>L-T-P-Credits</th>
<th>Year of Introduction</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS232</td>
<td>Free and Open Source Software Lab</td>
<td>0-0-3-1</td>
<td>2016</td>
</tr>
</tbody>
</table>

Pre-requisite: CS204 Operating systems

Course Objectives: To expose students to FOSS environment and introduce them to use open source packages in open source platform.

List of Exercises/Experiments: (Minimum 12 exercises/experiments are mandatory)

1. Getting started with Linux basic commands and directory structure, execute file, directory operations.
2. Linux commands for redirection, pipes, filters, job control, file ownership, file permissions, links and file system hierarchy.
3. Shell Programming: Write shell script to show various system configuration like
 - Currently logged user and his logname
 - Your current shell
 - Your home directory
 - Your operating system type
 - Your current path setting
 - Your current working directory
 - Show Currently logged number of users
4. Write shell script to show various system configuration like
 - About your OS and version, release number, kernel version
 - Show all available shells
 - Show mouse settings
 - Show computer CPU information like processor type, speed etc
 - Show memory information
 - Show hard disk information like size of hard-disk, cache memory, model etc
 - File system (Mounted)
5. Shell script program for scientific calculator.
6. Write a script called addnames that is to be called as follows, where *classlist* is the name of the classlist file, and *username* is a particular student's username.

   ```
   ./addnames classlist username
   ```

 The script should
 - check that the correct number of arguments was received and print an usage message if not,
 - check whether the classlist file exists and print an error message if not,
 - check whether the username is already in the file, and then either
 - print a message stating that the name already existed, or
 - add the name to the end of the list.
7. Version Control System setup and usage using GIT.
 - Creating a repository
 - Checking out a repository
 - Adding content to the repository
 - Committing the data to a repository
- Updating the local copy
- Comparing different revisions
- Revert
- Conflicts and Solving a conflict

8. Text processing and regular expression with Perl, Awk: simple programs, connecting with database e.g., MariaDB
9. Shell script to implement a script which kills every process which uses more than a specified value of memory or CPU and is run upon system start.
10. GUI programming: Create scientific calculator – using Gambas or try using GTK or QT
11. Running PHP: simple applications like login forms after setting up a LAMP stack
12. Advanced Linux commands curl, wget, ftp, ssh and grep
13. Application deployment on a cloud-based LAMP stack/server with PHP e.g: Openshift, Linode etc.
14. Kernel configuration, compilation and installation: Download / access the latest kernel source code from kernel.org, compile the kernel and install it in the local system. Try to view the source code of the kernel
15. Virtualisation environment (e.g., xen, kvm, virtualbox or lguest) to test an applications, new kernels and isolate applications. It could also be used to expose students to other alternate OSs like *BSD
16. Compiling from source: learn about the various build systems used like the auto* family, cmake, ant etc. instead of just running the commands. This could involve the full process like fetching from a cvs and also include autoconf, automake etc.,
17. Introduction to packet management system: Given a set of RPM or DEB, how to build and maintain, serve packages over http or ftp. and also how do you configure client systems to access the package repository.
18. Installing various software packages. Either the package is yet to be installed or an older version is existing. The student can practice installing the latest version. Of course, this might need Internet access.
 - Install samba and share files to windows
 - Install Common Unix Printing System(CUPS)

Expected outcome:
Students will be able to:

1. Identify and apply various Linux commands
2. Develop shell scripts and GUI for specific needs
3. Use tools like GIT,
4. Perform basic level application deployment, kernel configuration and installation, packet management and installation etc.
<table>
<thead>
<tr>
<th>Course code</th>
<th>Course Name</th>
<th>L-T-P - Credits</th>
<th>Year of Introduction</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS234</td>
<td>DIGITAL SYSTEMS LAB</td>
<td>0-0-3-1</td>
<td>2016</td>
</tr>
</tbody>
</table>

Pre-requisite: CS203 Switching theory and logic design

Course Objectives:
1. To familiarize students with digital ICs, the building blocks of digital circuits
2. To provide students the opportunity to set up different types of digital circuits and study their behaviour

List of Exercises/Experiments: (minimum 12 exercises/experiments are mandatory)
1. Familiarizations and verification of the truth tables of basic gates and universal gates.
2. Verification of Demorgan's laws for two variables.
3. Implementation of half adder and full adder circuits using logic gates.
4. Implementation of half subtractor and full subtractor circuits using logic gates.
5. Implementation of parallel adder circuit.
6. Realization of 4 bit adder/subtractor and BCD adder circuits using IC 7483.
8. Design and implementation of code convertor circuits
 a) BCD to excess 3 code b) binary to gray code
9. Implementation of multiplexer and demultiplexer circuits using logic gates. Familiarization with various multiplexer and demultiplexer ICs.
10. Realization of combinational circuits using multiplexer/demultiplexer ICs.
11. Implementation of SR, D, JK, JK master slave and T flip flops using logic gates. Familiarization with IC 7474 and IC 7476.
14. Realization of asynchronous counters using flip flop ICs.
15. Realization of synchronous counters using flip flop ICs. Familiarization with various counter Integrated Circuits.
16. Implementation of a BCD to 7 segment decoder and display.
17. Simulation of Half adder, Full adder using VHDL.
 (Note: The experiments may be done using hardware components and/or VHDL)

Course outcome:
Students will be able to:
1. identify and explain the digital ICs and their use in implementing digital circuits.
2. design and implement different kinds of digital circuits.